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General path algebras

K always denotes a field. Any field.

Let E be a directed graph. E = (E 0,E 1, r , s)

•s(e) e // •r(e)

The path algebra KE is the K -algebra with basis {pi} consisting of
the directed paths in E . (View vertices as paths of length 0.)

p · q = pq if r(p) = s(q), 0 otherwise.

In particular, s(e) · e = e = e · r(e).

Note: E 0 finite ⇔ KE is unital; then 1KE =
∑

v∈E0 v .
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e = r(e) for all e ∈ E 1; f ∗e = 0 for all f 6= e ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at regular vertices v , i.e., not sinks, not infinite emitters)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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(CK1) e∗e = r(e) for all e ∈ E 1; f ∗e = 0 for all f 6= e ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at regular vertices v , i.e., not sinks, not infinite emitters)

Definition

The Leavitt path algebra of E with coefficients in K
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(CK1) e∗e = r(e) for all e ∈ E 1; f ∗e = 0 for all f 6= e ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at regular vertices v , i.e., not sinks, not infinite emitters)

Definition

The Leavitt path algebra of E with coefficients in K
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Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:
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ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w hh∗ = u ff ∗ = ... (no simplification)

But (ff ∗)2 = f (f ∗f )f ∗ = f · w · f ∗ = ff ∗.
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2
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y3
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QQ

Then LK (E ) ∼= LK (1, n), the “Leavitt K -algebra of order n”.

(W.G. Leavitt, Transactions. A.M.S. 1962).

LK (1, n) is the universal K -algebra R for which RR ∼= RRn.

LK (1, n) = 〈x1, ..., xn, y1, ..., yn | xiyj = δi ,j1K ,
n∑

i=1

yixi = 1K 〉

Gene Abrams University of Colorado Colorado SpringsUCCS

An introduction to Leavitt path algebras, with connections to C∗-algebras and noncommutative algebraic geometry



Leavitt path algebras Connections: C∗-algebras Similarities Differences Similar or Different? Connections: Noncomm. alg. geom.

Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n), the “Leavitt K -algebra of order n”.

(W.G. Leavitt, Transactions. A.M.S. 1962).

LK (1, n) is the universal K -algebra R for which RR ∼= RRn.

LK (1, n) = 〈x1, ..., xn, y1, ..., yn | xiyj = δi ,j1K ,
n∑

i=1

yixi = 1K 〉

Gene Abrams University of Colorado Colorado SpringsUCCS

An introduction to Leavitt path algebras, with connections to C∗-algebras and noncommutative algebraic geometry



Leavitt path algebras Connections: C∗-algebras Similarities Differences Similar or Different? Connections: Noncomm. alg. geom.

Leavitt path algebras

Some general properties of Leavitt path algebras:

1 LK (E ) = spanK{pq∗ | p, q paths in E}.

2 LK (E ) ∼= LK (E )op.

3 LK (E ) admits a natural Z-grading: deg(pq∗) = `(p)− `(q).

4 J(LK (E )) = {0}.
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Graph C∗-algebras

E any directed graph, H a Hilbert space.

Definition. A Cuntz-Krieger E -family in B(H) is a collection of
mutually orthogonal projections {Pv | v ∈ E 0}, and partial
isometries {Se | e ∈ E 1} with mutually orthogonal ranges, for
which:

(CK1) S∗e Se = Pr(e) for all e ∈ E 1,

(CK2)
∑
{e|s(e)=v} SeS∗e = Pv whenever v is a regular vertex, and

(CK3) SeS∗e ≤ Ps(e) for all e ∈ E 1.

The graph C∗-algebra C ∗(E ) of E is the universal C∗-algebra
generated by a Cuntz-Krieger E -family.
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Graph C∗-algebras

For µ = e1e2 · · · en a path in E ,
let Sµ denote Se1Se2 · · · Sen ∈ C ∗(E ).

Proposition: Consider

A = spanC{Pv , SµS∗ν | v ∈ E 0, µ, ν paths in E} ⊆ C ∗(E ).

Then LC(E ) ∼= A as ∗-algebras.

Consequently, C ∗(E ) may be viewed as the completion (in
operator norm) of LC(E ).

So it’s probably not surprising that there are some close
relationships between LC(E ) and C ∗(E ).

Gene Abrams University of Colorado Colorado SpringsUCCS

An introduction to Leavitt path algebras, with connections to C∗-algebras and noncommutative algebraic geometry



Leavitt path algebras Connections: C∗-algebras Similarities Differences Similar or Different? Connections: Noncomm. alg. geom.

Graph C∗-algebras

For µ = e1e2 · · · en a path in E ,
let Sµ denote Se1Se2 · · · Sen ∈ C ∗(E ).

Proposition: Consider

A = spanC{Pv , SµS∗ν | v ∈ E 0, µ, ν paths in E} ⊆ C ∗(E ).

Then LC(E ) ∼= A as ∗-algebras.

Consequently, C ∗(E ) may be viewed as the completion (in
operator norm) of LC(E ).

So it’s probably not surprising that there are some close
relationships between LC(E ) and C ∗(E ).

Gene Abrams University of Colorado Colorado SpringsUCCS

An introduction to Leavitt path algebras, with connections to C∗-algebras and noncommutative algebraic geometry



Leavitt path algebras Connections: C∗-algebras Similarities Differences Similar or Different? Connections: Noncomm. alg. geom.

Graph C∗-algebras

For µ = e1e2 · · · en a path in E ,
let Sµ denote Se1Se2 · · · Sen ∈ C ∗(E ).

Proposition: Consider

A = spanC{Pv , SµS∗ν | v ∈ E 0, µ, ν paths in E} ⊆ C ∗(E ).

Then LC(E ) ∼= A as ∗-algebras.

Consequently, C ∗(E ) may be viewed as the completion (in
operator norm) of LC(E ).

So it’s probably not surprising that there are some close
relationships between LC(E ) and C ∗(E ).

Gene Abrams University of Colorado Colorado SpringsUCCS

An introduction to Leavitt path algebras, with connections to C∗-algebras and noncommutative algebraic geometry



Leavitt path algebras Connections: C∗-algebras Similarities Differences Similar or Different? Connections: Noncomm. alg. geom.

Graph C∗-algebras: Examples

Here are the graph C∗-algebras which arise from the graphs of the
previous examples.

E = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Then C ∗(E ) ∼= Mn(C) ∼= LC(E ).

E = •v ff
Then C ∗(E ) ∼= C (T), the continuous functions on the unit circle.
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Then C ∗(E ) ∼= On, the Cuntz algebra of order n.
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Brief History

1962: Leavitt defines / investigates LK (1, n).

1977: Cuntz defines / investigates On.

1980 - 2000: Various authors generalize Cuntz’ construction;
eventually, graph C∗-algebras are defined / investigated.

2005: Leavitt path algebras are defined / investigated.
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Some graph terminology

Example •u
h

~~
•v

g

==•w
f

{{

i
QQ j

// •x

1 cycle;

exit for a cycle; Condition (L)

2 downward directed (also called Condition (MT3))

3 connects to a cycle; cofinal

Standing hypothesis: All graphs are finite (for now) ...
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Similarities

We begin by looking at some similarities between
the structure of LK (E ) and the structure of C ∗(E ).
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Simplicity

Simplicity:

Algebraic: No nontrivial two-sided ideals.

Analytic: No nontrivial closed two-sided ideals.

Gene Abrams University of Colorado Colorado SpringsUCCS

An introduction to Leavitt path algebras, with connections to C∗-algebras and noncommutative algebraic geometry



Leavitt path algebras Connections: C∗-algebras Similarities Differences Similar or Different? Connections: Noncomm. alg. geom.

Simplicity

Theorem: These are equivalent for any finite graph E :

1 LC(E ) is simple

2 LK (E ) is simple for any field K

3 C ∗(E ) is (topologically) simple

4 C ∗(E ) is (algebraically) simple

5 E is cofinal, and satisfies Condition (L).

Sketch of Proof: Show (3) ⇔ (5).

Show (2) ⇔ (5). (1) ⇔ (5) follows immediately.

(3) ⇔ (4) is basic analysis.

Big Question: Can we go ’directly’ between

(1) or (2), and (3) or (4) ??
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Purely infinite simplicity

Purely infinite simplicity:

Algebraic: R is purely infinite simple in case R is simple and every
nonzero right ideal of R contains an infinite idempotent.

Analytic: The simple C∗-algebra A is called purely infinite (simple)
if for every positive x ∈ A, the subalgebra xAx contains an infinite
projection.

(Algebraic) purely infinite simplicity for unital rings is equivalent
to: R is not a division ring, and for all nonzero x ∈ R there exist
α, β ∈ R for which αxβ = 1.

(Topological) purely infinite simplicity for unital C∗-algebras is
equivalent to: A 6= C and for all nonzero x ∈ A there exist
α, β ∈ A for which αxβ = 1.
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Purely infinite simplicity

Theorem: These are equivalent for a finite graph E :

1 LC(E ) is purely infinite simple.

2 LK (E ) is purely infinite simple for any field K .

3 C ∗(E ) is (topologically) purely infinite simple.

4 C ∗(E ) is (algebraically) purely infinite simple.

5 E is cofinal, every cycle in E has an exit, and every vertex in
E connects to a cycle.
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Primitivity

Primitivity:

Algebraic: R is (left) primitive if there exists a simple faithful left
R-module.

Analytic: A is (topologically) primitive if there exists a faithful
irreducible representation π : A→ B(H) for a Hilbert space H.

Theorem: These are equivalent for a finite graph E :

1 LC(E ) is primitive.

2 LK (E ) is primitive for any field K .

3 C ∗(E ) is (topologically) primitive.

4 C ∗(E ) is (algebraically) primitive.

5 E is downward directed and satisfies Conditions (L).
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Primitivity

Recently, the primitivity result has been extended to all graphs,
both for Leavitt path algebras and graph C∗-algebras.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans AMS 2014)
Let E be an arbitrary graph. Then LK (E ) is primitive if and only if

1 E is downward directed, (⇔ LK (E ) is prime)

2 E satisfies Condition (L), and

3 there exists a countable set of vertices S in E for which every
vertex of E connects to an element of S .

(“Countable Separation Property”)

This result gave a systematic answer to a decades-old question of
Kaplansky.
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Primitivity

Theorem. (A-, Mark Tomforde, to appear, Münster J. Math) Let
E be an arbitrary graph. Then C ∗(E ) is primitive if and only if the
SAME three conditions hold as in the Leavitt path algebra result:

1 E is downward directed,

2 E satisfies Condition (L), and

3 there exists a countable set of vertices S in E for which every
vertex of E connects to an element of S .

This result gave a systematic answer to a decades-old question of
Dixmier.
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Rosetta Stone?

There are many additional examples of this sort of behavior:

For instance:

1 exchange property

2 V-monoid (in particular, K0(LK (E )) ∼= K0(C ∗(E )))

3 possible values of stable rank

But there are no ’direct’ proofs for any of them.

Is there some sort of Rosetta Stone ??
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Differences

We now look at some differences between
the structure of LK (E ) and the structure of C ∗(E ).
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Primeness

Algebraic: R is a prime ring in case {0} is a prime ideal of R; that
is, in case for any two-sided ideals I , J of R, I · J = {0} if and only
if I = {0} or J = {0}.

Theorem. K any field, E any graph.
LK (E ) is prime ⇔ E is downward directed.
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Primeness

Analytic: A is a prime C∗-algebra in case {0} is a prime ideal of A;
that is, in case for any closed two-sided ideals I , J of R, I · J = {0}
if and only if I = {0} or J = {0}.

Theorem: C ∗(E ) is prime ⇔ E downward directed and satisfies
Condition (L).

So for example LK ( • ee ) is prime, but C ∗( • ee ) is not prime.
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Tensor products of graph algebras

Well known: O2 ⊗O2
∼= O2.

Question: Is the analogous statement true for Leavitt path
algebras? i.e., do we have

LK (1, 2)⊗K LK (1, 2) ∼= LK (1, 2) ?

Open for about five years.

Then (early 2011) Answer: No.

Ara & Cortiñas; Dicks; Bell & Bergman
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Tensor products of graph algebras

Using Ara / Cortiñas approach, it follows that

⊗sLK (1, 2) ∼= ⊗tLK (1, 2) ⇔ s = t.

Using Dicks’ approach, we can show

Proposition. For finite graphs E , F ,

LK (E )⊗LK (F ) ∼= LK (G ) some G ⇔ at least one of E ,F is acyclic
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LK (E )⊗ LK (F ) ∼= LK (G )⇔ E or F acyclic

Sketch of Proof.

1 For any finite E , LK (E ) has proj.dim.(LK (E )) ≤ 1.

2 LK (E ) is von Neumann regular ⇔ E is acyclic.
(vNr ⇔ every R-module is flat ⇔ ∀a ∈ R ∃x ∈ R, a = axa.)

3 So flatdim.(LK (E )) = 1⇔ E contains a cycle.

4 Old result of Eilenberg et. al.: For K -algebras A,B,
proj.dim.(A) + flatdim.(B) ≤ proj.dim.(A⊗ B).

5 So if both E and F contain a cycle, then
proj.dim.(LK (E )⊗ LK (F )) ≥ 2.

6 If one of E ,F is acyclic (say E ), then LK (E )⊗ LK (F ) is a
direct sum of full matrix rings over LK (F ).
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Higher K -groups

We mentioned previously that K0(LK (E )) ∼= K0(C ∗(E )). This is
true for all E (row-finite).

Notes:

1 K top
0 (C ∗(E )) = K alg

0 (C ∗(E ))

2 (for E purely infinite simple) K1(C ∗(E )) depends only on AE ,
while K1(LK (E )) depends also on the unit group of K .

3 There is no Bott periodicity for LK (E ).
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Similarities

We continue by looking at properties for which

we do not currently know

whether these give similarities or differences between
the structure of LK (E ) and the structure of C ∗(E ).
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The isomorphism question

Perhaps the most basic question ...

If LC(E ) ∼= LC(F ), does this imply C ∗(E ) ∼= C ∗(F )?

And conversely?

(Need to interpret “isomorphism” appropriately.)

Partial answer: OK in case the graph algebras are simple.
(This uses classification results.)

Answer not known in general.
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An algebraic Kirchberg / Phillips Theorem?

Suppose E and F are finite graphs for which C ∗(E ) and C ∗(F )
(equivalently, LC(E ) and LC(F )) are simple. Assume that these are
also purely infinite.

Note: For E purely infinite simple, K0(C ∗(E )) ∼= K0(C ∗(F ))
implies K1(C ∗(E )) ∼= K1(C ∗(F )).

A similar result holds for Leavitt path algebras too.

A well-known and deep Theorem:

(K0(C ∗(E )), [1C∗(E)]) ∼= (K0(C ∗(F )), [1C∗(F )])⇒ C ∗(E ) ∼= C ∗(F ).
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An algebraic Kirchberg / Phillips Theorem?

One approach:

(Step 1) Use results from symbolic dynamics to show that the
isomorphism C ∗(E ) ∼= C ∗(F ) follows in case one also assumes that
det(I − AE ) = det(I − AF ).

(Step 2) Use KK-theory to show that the graph C∗-algebras
C ∗(E2) and C ∗(E4) are isomorphic:

E2 = •v1
** ** •v2

ffjj and

E4 = •v1
** ** •v2

�� **
jj •v3

�� **
jj •v4

ffjj

(These have identical K -theory, but different determinants.)
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An algebraic Kirchberg / Phillips Theorem?

(Step 3) Reduce the “bridging of the determinant gap” for all
appropriate pairs of graphs to the question of establishing a
specific isomorphism of an infinite dimensional vector space having
specified properties (use the isomorphism from (2))

(Step 4) Show such an isomorphism exists.
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An algebraic Kirchberg / Phillips Theorem?

A second approach:

Use the Kirchberg / Phillips Theorem.

Remark: The fact that O2 ⊗O2
∼= O2 is invoked in Phillips’

proof ...
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An algebraic Kirchberg / Phillips Theorem?

Question: Is there an analogous result for Leavitt path algebras?
That is ....

Let K be a field. Suppose E and F are finite graphs for which
LK (E ) and LK (F ) are purely infinite simple. Suppose

(K0(LK (E )), [1LK (E)]) ∼= (K0(LK (F )), [1LK (F )]).

Does this imply that LK (E ) ∼= LK (F ) ?
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An algebraic Kirchberg / Phillips Theorem?

For Leavitt path algebras we have:

“Restricted” Algebraic KP Theorem: In this situation, if we
also assume det(I − AE ) = det(I − AF ), then we get
LK (E ) ∼= LK (F ). (The proof uses the same deep results from
symbolic dynamics mentioned above.)

We do not know whether or not LK (E2) ∼= LK (E4).

Is there a good analog to KK theory in the algebraic context?

Is there an explicit isomorphism from C ∗(E2) to C ∗(E4) that
we can possibly exploit?

If it turns out that LK (E2) ∼= LK (E4), it’s not clear how one could
use this to establish isomorphisms between Leavitt path algebras of
different pairs of graphs for which the K -theory matches up but
the signs of the determinants do not.
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An algebraic Kirchberg / Phillips Theorem?

Algebraic KP Question: Can we drop the determinant hypothesis
in the Restricted Algebraic KP Theorem?

Conjecture:

Currently there is no Conjecture.

There are three possibilities: Yes, No, and Sometimes. The answer
will be interesting, no matter how things play out.
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Connections to noncommutative algebraic geometry

Recently, S. Paul Smith and others have shown that Leavitt path
algebras arise naturally in certain algebraic geometry contexts.

Suppose A is a Z+-graded algebra (i.e., a Z-graded algebra for
which An = {0} for all n < 0).

Gr(A) denotes the category of Z-graded left A-modules (with
graded homomorphisms).

Fdim(A) denotes the full subcategory of Gr(A) consisting of the
graded A-modules which are the sum of their finite dimensional
submodules.

Denote by QGr(A) the quotient category Gr(A)/Fdim(A).
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Connections to noncommutative algebraic geometry

The category QGr(A) turns out to be one of the fundamental
constructions in noncommutative algebraic geometry.

Suppose E is a directed graph. Then the path algebra KE is
Z+-graded in the usual way:

deg(v) = 0 for each vertex v , and deg(e) = 1 for each edge e.

So we can construct the category QGr(KE ).

Let Enss denote the graph gotten by repeatedly removing all sinks
and sources (and their incident edges) from E .
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Connections to noncommutative algebraic geometry

Theorem (S.P. Smith, 2012) Let E be a finite graph. Then there
is an equivalence of categories

QGr(KE ) ∼ Gr(LK (Enss)).

Moreover, since LK (Enss) is strongly graded, then these categories
are also equivalent to Mod(LK (Enss)0), the full category of
modules over the zero-component LK (Enss)0.

So the Leavitt path algebra construction arises naturally in the
context of noncommutative algebraic geometry.
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Connections to noncommutative algebraic geometry

In general, when the Z+-graded K -algebra A arises as an
appropriate graded deformation of the standard polynomial ring
K [x0, ..., xn], then QGr(A) shares many similarities with projective
n-space Pn; parallels between them have been studied extensively.

However, in general, an algebra of the form KE does not arise in
this way; and for these, “it is much harder to see any geometry
hiding in QGr(KE ).”

In specific situations there are some geometric perspectives
available, but the general case is not well understood.
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Thank you.

Thanks also to The Simons Foundation.
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